?
在中科院分子植物卓越中心/植生生態(tài)所合成生物學重點實驗室內(nèi),覃重軍團隊在一起學習交流(7月31日攝)。?新華社記者 丁汀 攝
新華社上海8月2日電題:人造單條染色體真核細胞問世 我國開啟合成生物學研究新時代
新華社記者王琳琳、張泉
?。保梗叮的辏覈茖W家在世界上首次人工合成出與天然分子化學結(jié)構(gòu)相同、有完整生物活性的蛋白質(zhì)——結(jié)晶牛胰島素,開辟了人工合成蛋白質(zhì)的時代。
50多年后的今天,我國科學家在最新一期國際科學期刊《自然》上發(fā)表論文,宣布首次人工創(chuàng)造出有生命活性的單染色體真核細胞,開啟了合成生物學研究的新時代。
在中科院分子植物卓越中心/植生生態(tài)所內(nèi),覃重軍(右)與團隊成員在實驗室里交流(7月31日攝)。新華社記者 丁汀 攝
人類能否創(chuàng)造生命?此次突破意義何在?
人造纖維、人造衛(wèi)星、人造材料……在我們的潛意識里,只要是人造的東西都是沒有生命的。人類真能“創(chuàng)造”出生命嗎?
?。保梗梗赌?,克隆羊“多利”誕生。人們認為,這就是所謂的“人造生命”。然而,科學共同體認為,克隆僅僅是“復制”了已有的生命體,還不是真正意義上的“創(chuàng)造”。人造生命,應該是利用生命體性狀由遺傳基因決定的原理,通過人工設計并合成新的遺傳基因,“從頭到腳”創(chuàng)造與地球現(xiàn)有生命體均不同的全新生命體。
因此,從這個意義上講,“100%人造生命”還遠未出現(xiàn)。但我國科學家的最新研究成果足以稱得上這條“長征路”上的重要突破,意義非凡。
中科院分子植物卓越中心/植生生態(tài)所合成生物學重點實驗室覃重軍團隊以釀酒酵母為實驗對象,采用工程化精準設計方法,使用CRISPR-Cas9基因編輯技術(shù)對釀酒酵母16條染色體的全基因組進行了大規(guī)模修剪、重新排列,最終“創(chuàng)造”了將幾乎所有遺傳信息融合進1條超長線型染色體的酵母細胞?!绑w檢報告”表明,雖然動了“大手術(shù)”,但“全新版”酵母細胞的生長、功能和基因表達均與天然酵母相似。
中科院深圳先進技術(shù)研究院研究員戴俊彪認為,這一結(jié)果表明,自然進化而成的現(xiàn)有真核生物(至少釀酒酵母)染色體數(shù)目與功能之間并不存在直接的決定關系,染色體的數(shù)目可以進行人為改變,同時對細胞生長不造成顯著的影響。這顛覆了“染色體的天然三維結(jié)構(gòu)決定基因表達”的傳統(tǒng)觀念。
與前人對單個染色體或一條長鏈DNA進行小修、小補、小合成不同的是,業(yè)內(nèi)專家認為,該成果實現(xiàn)了對一個物種的染色體數(shù)目進行系統(tǒng)和大規(guī)模改造。這表明,天然復雜的生命體可以通過人工改造變簡約,最終實現(xiàn)“人造”自然界中不存在的全新生命。
在中科院分子植物卓越中心/植生生態(tài)所內(nèi),覃重軍在講述關于人造單條染色體真核細胞的研究內(nèi)容(7月31日攝)。 新華社記者 丁汀 攝
染色體數(shù)目“16合1”,目的何在?
在生物教科書中,自然界中的生命體按細胞結(jié)構(gòu)劃分,可分為真核生物和原核生物。真核生物細胞通常有多條線型染色體,原核生物細胞一般有1條環(huán)型染色體。面包發(fā)酵和釀酒過程中使用的酵母是生物研究中最常使用的典型真核生物。
?。玻埃保衬辏翟拢溉?,覃重軍大膽猜想,真核細胞與原核細胞的劃分并非“涇渭分明”,二者完全可以相互跨越。即,真核細胞也可以改造成1條線型、甚至是環(huán)型的染色體,裝載所有遺傳物質(zhì)、完成正常細胞功能。于是這一天,他將自己的猜想寫進了筆記本。
隨后,他與副研究員薛小莉設計了精準的工程設計總體方案,博士生邵洋洋從2013年開始研發(fā)高效的染色體融合操作方法。2016年10月,團隊成功合成出第一個單染色體真核酵母細胞,而后都在對其進行“系統(tǒng)體檢”。
自然科研機構(gòu)中國區(qū)總監(jiān)保羅·埃文斯說,盡管融合操作顯著改變了三維染色體結(jié)構(gòu),但經(jīng)證實,改造后的酵母細胞出乎意料地穩(wěn)健,在不同的培養(yǎng)條件下,沒有表現(xiàn)出重大的生長缺陷。
“天然酵母染色體的遺傳基因有許多重復序列,這增加了細胞的不穩(wěn)定性,容易導致突變或變異。而我們創(chuàng)造的全新酵母細胞刪除了這些重復序列,化繁為簡?!瘪剀娬f。
他透露,將酵母染色體數(shù)量“16合1”的最終目的是發(fā)現(xiàn)自然界中復雜現(xiàn)象背后的規(guī)律內(nèi)核,最終用于治療人類疾病?!霸诒WC細胞正常存活的前提下,染色體數(shù)目簡化得越多,越容易更精準地找到生命體的遺傳密碼到底哪些可變、哪些不可變?!?/p>
在中科院分子植物卓越中心/植生生態(tài)所內(nèi),覃重軍在講述關于人造單條染色體真核細胞的研究內(nèi)容(7月31日攝)。 新華社記者 丁汀 攝
單染色體真核細胞已問世,然后呢?
人工智能的到來引起了人類的恐慌,強大的機器讓人們擔心終有一天我們將被機器統(tǒng)治,而單染色體真核細胞的問世或許也會從另一個角度引起人們的憂慮。未來某一天,人類會不會創(chuàng)造出比自身更強大的生命?
對此,覃重軍表示,目前人類對生命基因組遺傳密碼的運轉(zhuǎn)機制所知甚少。“分子生物學的發(fā)展讓我們對單個基因有了一定了解,但他們彼此間如何協(xié)作、又怎樣變化我們知道很少。目前,我們處在簡單模仿自然的水平,真的去創(chuàng)造尤其是脫離大自然的‘藍本’去創(chuàng)造幾乎不可能,所以距離‘100%人造生命’還差得很遠?!?/p>
大手筆改造酵母染色體基因組的過程中,覃重軍深深感慨于自然的神奇。“微生物的變化非???,你稍做改動,大自然就會以完全嘲笑人類理解能力的方式,變化出更多可能?!?/p>
他認為,科學家一定要有堅定的倫理操守?!皥詻Q不能做致病生物的改造,因為你不知道最終會出現(xiàn)什么結(jié)果。所以我們拿釀酒酵母這種可食用的微生物做改造,目的是找到阻止其變異、惡化的解決辦法?!?/p>
酵母三分之一基因與人類同源,人造單染色體真核酵母細胞的誕生為研究人類染色體異常疾病提供了重要模型。端粒是染色體末端的保護結(jié)構(gòu),端粒的長短與過早衰老、基因突變、腫瘤等疾病形成有關。單染色體真核酵母細胞僅有2個端粒,這為研究上述疾病也提供了很好的研究基礎。下一步,科研團隊將借助該模型研發(fā)人類染色體缺陷或倍增等相關疾病的治愈方法。
此外,保羅·埃文斯認為,人造單染色體真核酵母細胞也可成為研究染色體生物學基本概念的強大資源,包括染色體的復制、重組和分離,這些都是生物學領域十分重要的主題。
在中科院分子植物卓越中心/植生生態(tài)所內(nèi),覃重軍(右)與團隊成員邵洋洋在實驗室內(nèi)研究交流(7月31日攝)。新華社記者 丁汀 攝
“創(chuàng)造”單染色體真核細胞,合成生物學如何邁入新時代?
人造生命對應的學科叫合成生物學。如果說基因編輯還是對生命遺傳物質(zhì)的“小修小改”,那么合成生物學則是“推倒重來”。
本世紀初,合成生物學在基因組學、系統(tǒng)生物學、工程學等多學科基礎上逐漸形成。經(jīng)過多年不懈努力,我國已形成初具規(guī)模的合成生物學基礎科學研究、技術(shù)創(chuàng)新、產(chǎn)品開發(fā)團隊,一大批重點實驗室和研究中心相繼建立。
2017年3月,國際學術(shù)期刊《科學》以封面文章形式發(fā)表了美、中、英等多國科研機構(gòu)共同參與的“人工合成酵母染色體項目”的部分成果,他們用化學方法合成了5條酵母染色體,其中,中國科學家合成了4條,相比“人類基因組計劃”中國科學家所承擔的1%基因測序有了大幅進步。
此次成果不僅完全由中國科學家獨立完成,而且對酵母全部16條染色體進行大剪大拼,最終合成為1條,可謂在去年前人的工作基礎上又邁出了一大步。
如果說在“人工合成酵母染色體項目”中,我國科學家扮演了“挑大梁”的角色,那么在此次“單條染色體真核酵母細胞”的合成中,我國科學家掌握了核心關鍵技術(shù),獲得了國際同行的廣泛認可。
接下來,合成生物學如何邁入新時代?覃重軍認為,“思想上大膽創(chuàng)新+工程上精細實施”,是未來中國合成生物學取得重大突破不可缺少的兩大因素?!拔鞣胶铣缮飳W的研究模式強調(diào)精細化工程實施,但只有工程實施遠遠不夠,敢于跳出權(quán)威束縛、有原創(chuàng)思想引領才是保持領先優(yōu)勢的關鍵?!?/p>
此外,業(yè)內(nèi)專家一致認為,要對合成生物學可能帶來的負面影響與國際同行加強倫理討論、建立預警機制、完善監(jiān)管制度。生命是大自然的“作品”和生物長期進化的結(jié)果。下一步,合成生物學要對生物種類、生命基因的改動設置明確的“紅色警戒線”,謹防破壞既有生態(tài)系統(tǒng)、引發(fā)生物安全風險。