国产丝袜在线精品丝袜|在线A毛片免费视频观|日韩精品久久久一区二区|亚洲成在人网站天堂直播|99在线精品66视频无码|亚洲欧美不卡视频在线播放|国产精品久久久久久免费一级|久久精品国产亚洲AV香蕉软件

New X-ray points to technological applications on wide-ranging industries: Aussie research

Source: Xinhua| 2018-12-01 08:52:35|Editor: Chengcheng
Video PlayerClose

SYDNEY, Dec. 1 (Xinhua) -- Australian scientists said they had developed a new X-ray method to see inside granular flows, pointing to technological applications in sectors ranging from farming and food production to transport and mining.

"Imagine coffee in grinders, rice in silos, and minerals on conveyors. For a long time, we've known that the grains hidden within the bulk move, but until now we have not understood precisely how. Our X-ray rheography is the first physical method to resolve this," civil engineering professor Itai Einav from the University of Sydney said in a statement about the research late on Friday.

The researchers said that their new technique gathers information via three-point high-speed radiography before assembling it, much like solving a Sudoku number-placement puzzle. The method allows them to form a 3D image of moving grains to better understand how particles flow and behave in various circumstances.

"Unlike fluids, we discovered that confined, three-dimensional steady granular flows arise through cycles of contraction and expansion. We also found that grains tend to travel along parallel lines, even near curved boundaries," the professor said.

The team also found that shape is an important factor in determining flow. For example, elongated barley grains move faster than their spherical counterparts, while different types of grains may tend to group together, much like when emptying a cereal box.

Moreover, the findings can be applied to a number of industries, such as helping develop better silo solutions for edible grains, preventing wastage and spoilage in farming and large-scale food manufacturing, as well as more efficient transportation and storage of mining resources, according to the researchers.

"Until now, understanding granular movements in opaque materials has long been a challenge for many industries such as engineering, science, mining and even agriculture," university researcher Dr. James Baker said.

"The potential benefits span many areas, whether it be in understanding the mixing of pharmaceutical powders or the efficient transport of food grains or construction materials, " the researcher said.

Their study was published in scientific journal Nature Communications.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001376433621